Hydraulic Pumps

11-14

Gear Pumps (External Gear)

- Displacement parameters and determination
- Displacement = $\pi/4(D_o^2 D_i^2)L$
- D_o = Outer diameter of the two gears
- D_i = Inner diameter of the two gears
 - (Actually it is the diameter of the circle defined by the center of one gear and the outer diameter of the other.)

Gear Pumps (External Gear)

- Advantages:
 - Easy to manufacture
 - Compact
 - Cheap

Gear Pumps (Internal Gear)

Pumping Mechanism

11-15

Gear Pumps (Internal Gear)

- Displacement is a function of the number of teeth on the internal and external gears and the size of the crescent divider.
- Advantages
 - Similar to external gear pumps in many respects
 - Quieter as gear slap is reduced
- Disadvantages
 - Somewhat more difficult to manufacture
 - Same issues of volumetric efficiency
 - Same issues of unbalanced forces
 - Fixed displacement

Gear Pumps (Internal Gear - Gerotor)

Mechanism

- External (inside) gear is shaft driver
- Internal gear is driven by external
- Single tooth space /is displaced
- Design keeps tolerance close throughout the cycle

11-16

Gear Pumps (Internal Gear - Gerotor)

- Advantages
 - Cheap
 - Simple
 - Cheap
- Disadvantages
 - Limited pressure capability
 - Unbalanced design
 - Fixed displacement
 - Frequently used as a charge pump

Vane Pumps

Pumping

Displacement is this volume mechanism multiplied by the number of like volumes per revolution Increasing Volume Inlet Outlet Decreasing Volume COP VRIGHT () (1998) VICKERS, NCORPORATED

Vane Pumps (Variations)

- Vane tip pressure control options
 - Outlet pressure under the vanes
 - Surface pressure under the vanes
 - Intravanes: outlet pressure is applied always to a small area of the vane while surface pressure is applied to the rest of the area
- These are probably Vickers innovations and hence are highlighted in the text

Vane Pumps (Variations) Balanced designs

Vane Pumps Advantages

Cartridges to quickly replace rotating group

COPY RIGHT 🔘 (1998) VICKERS, INCORPORATED

Vane Pumps (Variations) • Variable Displacement Design

COPYRIGHT (1995) VICKERS, NCORPORATED

Vane Pumps

- Advantages
 - Quieter than gear pumps
 - Higher pressure capability than gear pumps?
 - Better volumetric efficiency than gear pumps?
 - Can be balanced in design for longer life
 - Variable displacement an option
- Disadvantages
 - More complex and expensive than gear pumps

Piston Pump Designs

- Displacement of an axial piston pump
 - $V_D = YAD tan(\theta)$
 - Y = Number of Pistons in the rotating group
 - A = the area of a single piston
 - \blacksquare D = is the diameter of the centerline circle of the piston bores
 - θ is the angle of the swashplate or the bend angle

Piston Pump Designs

Bent axis – variable displacement design

Piston Pump Advantages

- Generally highest volumetric efficiency
- Generally highest pressure capability
- Variable displacement designs

Piston Pump Disadvantages Higher cost (complexity)